Uncertainty, Complexity and Constraints: How Do We Robustly Assess Biological Responses under a Rapidly Changing Climate?

Author:

Rangwala ImtiazORCID,Moss Wynne,Wolken Jane,Rondeau Renee,Newlon Karen,Guinotte John,Travis William Riebsame

Abstract

How robust is our assessment of impacts to ecosystems and species from a rapidly changing climate during the 21st century? We examine the challenges of uncertainty, complexity and constraints associated with applying climate projections to understanding future biological responses. This includes an evaluation of how to incorporate the uncertainty associated with different greenhouse gas emissions scenarios and climate models, and constraints of spatiotemporal scales and resolution of climate data into impact assessments. We describe the challenges of identifying relevant climate metrics for biological impact assessments and evaluate the usefulness and limitations of different methodologies of applying climate change to both quantitative and qualitative assessments. We discuss the importance of incorporating extreme climate events and their stochastic tendencies in assessing ecological impacts and transformation, and provide recommendations for better integration of complex climate–ecological interactions at relevant spatiotemporal scales. We further recognize the compounding nature of uncertainty when accounting for our limited understanding of the interactions between climate and biological processes. Given the inherent complexity in ecological processes and their interactions with climate, we recommend integrating quantitative modeling with expert elicitation from diverse disciplines and experiential understanding of recent climate-driven ecological processes to develop a more robust understanding of ecological responses under different scenarios of future climate change. Inherently complex interactions between climate and biological systems also provide an opportunity to develop wide-ranging strategies that resource managers can employ to prepare for the future.

Funder

United States Geological Survey

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3