Abstract
Slip often occurs in humanoid robot walking, especially when the robot walks on a low friction floor or walks fast. Unexpected slip may cause the robot to fall and then sustain damage. In real environments, rotational and translational slip phenomena can happen during biped walking. Previous studies have mainly focused on solving these problems independently. In this paper, we propose strategies for simultaneous rotational and translational slip prevention based on a three mass model, which takes into account the effect of the swing leg. The rotational slip is prevented through a bionic walking pattern generator which mimics the yaw moment compensation mechanism of a human. The translational slip is eliminated through a novel reaction force ratio reduction control with the compensation of CoM (center of mass) acceleration. The effectiveness of the presented strategies is validated by simulations and experiments with an actual humanoid robot.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献