DHA-Rich Aurantiochytrium Biomass, a Novel Dietary Supplement, Resists Degradation by Rumen Microbiota without Disrupting Microbial Activity

Author:

Rinttilä TeemuORCID,Moran Colm A.ORCID,Apajalahti JuhaORCID

Abstract

We first sought to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA), on rumen fermentation and the resistance of DHA to degradation and biohydrogenation by rumen microbes through ex vivo fermentation experiments. Subsequently, we sought to quantify the diet-derived DHA content of milk and the impact of AURA on microbial composition and metabolism in a pilot feeding trial with rumen-cannulated dairy cows. To achieve our aims, rumen fluid from cannulated cows was used as inoculum, and the effect of AURA inclusion on fermentation ex vivo was examined. At doses corresponding to the amount of AURA recommended for commercial production animals, only ~10% of DHA was degraded or biohydrogenated by rumen microorganisms. The results show that feeding with AURA had no effect on either total bacterial density or short-chain fatty acid production. Real-time quantitative PCR analysis of the rumen fluid samples collected during a seven-week in vivo trial revealed that microbes related to lactic acid metabolism and methanogenesis were significantly suppressed by the AURA-supplemented diet. The DHA concentration in milk increased over 25-fold with the AURA-supplemented diet and dropped by 30–40% within one week of washout. The addition of A. limacinum biomass to dairy cow diets resulted in positive effects on rumen microbial composition with no adverse effect on fermentation activity. AURA-derived DHA was stable, with only modest degradation in the rumen, and was successfully deposited in milk. This is the first study to investigate the effect of supplementing the diet of dairy cows with a protist-based biomass, namely, on important rumen fermentation parameters and on DHA deposition in milk, using a combination of ex vivo and in vivo approaches.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3