3D Printing of PLA/Magnetic Ferrite Composites: Effect of Filler Particles on Magnetic Properties of Filament

Author:

Amirov AbdulkarimORCID,Omelyanchik AlexanderORCID,Murzin DmitryORCID,Kolesnikova ValeriaORCID,Vorontsov Stanislav,Musov Ismel,Musov Khasan,Khashirova Svetlana,Rodionova ValeriaORCID

Abstract

Three-dimensional printing is one of the most promising areas of additive manufacturing with a constantly growing range of applications. One of the current tasks is the development of new functional materials that would allow the manufacture of objects with defined magnetic, electrical, and other properties. In this work, composite magnetic filaments for 3D printing with tunable magnetic properties were produced from polylactic acid thermoplastic polymer with the addition of magnetic ferrite particles of different size and chemical composition. The used magnetic particles were cobalt ferrite CoFe2O4 nanoparticles, a mixture of CoFe2O4 and zinc-substituted cobalt ferrite Zn0.3Co0.7Fe2O4 nanoparticles (~20 nm), and barium hexaferrite BaFe12O19 microparticles (<40 µm). The maximum coercivity field HC = 1.6 ± 0.1 kOe was found for the filament sample with the inclusion of 5 wt.% barium hexaferrite microparticles, and the minimum HC was for a filament with a mixture of cobalt and zinc–cobalt spinel ferrites. Capabilities of the FDM 3D printing method to produce parts having simple (ring) and complex geometric shapes (honeycomb structures) with the magnetic composite filament were demonstrated.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3