Exploring 3D printing with magnetic materials: Types, applications, progress, and challenges

Author:

Konov G. A.1ORCID,Mazeeva A. K.1ORCID,Masaylo D. V.1ORCID,Razumov N. G.1ORCID,Popovich A. A.1ORCID

Affiliation:

1. Peter the Great St. Petersburg Polytechnic University

Abstract

3D printing, also known as additive manufacturing (AM), represents a rapidly evolving technological field capable of creating distinctive products with nearly any irregular shape, often unattainable using traditional techniques. Currently, the focus in 3D printing extends beyond polymer and metal structural materials, garnering increased attention towards functional materials. This review conducts an analysis of published data concerning the 3D printing of magnetic materials. The paper provides a concise overview of key AM technologies, encompassing vat photopolymerization, selective laser sintering, binder jetting, fused deposition modeling, direct ink writing, electron beam melting, directed energy deposition and laser powder bed fusion. Additionally, it covers magnetic materials currently utilized in AM, including hard magnetic Nd–Fe–B and Sm–Co alloys, hard and soft magnetic ferrites, and soft magnetic alloys such as permalloys and elect­rical steels. Presently, materials produced through 3D printing exhibit properties that often fall short compared to their counterparts fabricated using conventional methods. However, the distinct advantages of 3D printing, such as the fabrication of intricately shaped individual parts and reduced material wastage, are noteworthy. Efforts are underway to enhance the material properties. In specific instances, such as the application of metal-polymer composites, the magnetic properties of 3D-printed products generally align with those of traditional analogs. The review further delves into the primary fields where 3D printing of magnetic products finds application. Notably, it highlights promising areas, including the production of responsive soft robots with increased freedom of movement and magnets featu­ring optimized topology for generating highly homogeneous magnetic fields. Furthermore, the paper addresses the key challenges associated with 3D printing of magnetic products, offering potential approaches to mitigate them.

Publisher

National University of Science and Technology MISiS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3