Effect of Dough-Related Parameters on the Antimold Activity of Wickerhamomyces anomalus Strains and Mold-Free Shelf Life of Bread

Author:

Syrokou Maria K.,Paramithiotis SpirosORCID,Kanakis Charalabos D.ORCID,Papadopoulos Georgios K.,Tarantilis Petros A.ORCID,Skandamis Panagiotis N.,Bosnea LouloudaORCID,Mataragas MariosORCID,Drosinos Eleftherios H.

Abstract

The aim of the present study was to assess the antimold capacity of three Wickerhamomyces anomalus strains, both in vitro and in situ, and to identify the responsible volatile organic compounds. For that purpose, two substrates were applied; the former included brain heart infusion broth, adjusted to six initial pH values (3.5, 4.0, 4.5, 5.0, 5.5, 6.0) and supplemented with six different NaCl concentrations (0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%), while the latter was a liquid dough, fortified with the six aforementioned NaCl concentrations. After a 24 h incubation at 30 °C, the maximum antimold activity was quantified for all strains at 5120 AU/mL, obtained under different combinations of initial pH value and NaCl concentration. A total of twelve volatile compounds were detected; ethanol, ethyl acetate, isoamyl alcohol and isoamyl acetate were produced by all strains. On the contrary, butanoic acid-ethyl ester, acetic acid-butyl ester, ethyl caprylate, 3-methyl-butanoic acid, 2,4-di-tert-butyl-phenol, benzaldehyde, nonanal and octanal were occasionally produced. All compounds exhibited antimold activity; the lower MIC was observed for 2,4-di-tert-butyl-phenol and benzaldehyde (0.04 and 0.06 μL/mL of headspace, respectively), while the higher MIC was observed for butanoic acid-ethyl ester and ethyl caprylate (5.14 and 6.24 μL/mL of headspace, respectively). The experimental breads made with W. anomalus strains LQC 10353, 10346 and 10360 gained an additional period of 9, 10 and 30 days of mold-free shelf life, compared to the control made by commercially available baker’s yeast. Co-culture of the W. anomalus strains with baker’s yeast did not alter the shelf-life extension, indicating the suitability of these strains as adjunct cultures.

Funder

European Union and Greek national funds

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3