Abstract
In this study, P25-titanium dioxide (TiO2) was doped with ruthenium (Ru) by systematically varying the Ru content at 0.15, 0.30, 0.45 and 0.6 mol%. The synthesized Ru-doped TiO2 nanomaterials have been characterized by X-ray diffraction (XRD), Raman spectroscopy, energy-dispersive X-ray (EDX) analysis, UV-visible (UV–Vis) spectroscopy, and electrochemical impedance (EIS) spectroscopy. The XRD patterns of undoped and Ru-doped TiO2 nanomaterials confirm the presence of mixed anatase and rutile phases of TiO2 while EDX spectrum confirms the presence of Ti, O and Ru. Further, UV-visible absorption spectra of doped TiO2 nanomaterial reveal a slight red shift on Ru-doping. The short circuit current density (JSC) of the cells fabricated using the Ru-doped TiO2 photoanode was found to be dependent on the amount of Ru present in TiO2. Optimized cells with 0.3 mol% Ru-doped TiO2 electrodes showed efficiency which is 20% more than the efficiency of the control cell (η = 5.8%) under stimulated illumination (100 mWcm−2, 1 sun) with AM 1.5 filter. The increase in JSC resulted from the reduced rate of recombination upon doping of Ru and this was confirmed by EIS analysis.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献