Natural sensitizer extracted from Mussaenda erythrophylla for dye-sensitized solar cell

Author:

Rajaramanan Tharmakularasa,Heidari Gourji Fatemeh,Elilan Yogenthiran,Yohi Shivatharsiny,Senthilnanthanan Meena,Ravirajan Punniamoorthy,Velauthapillai Dhayalan

Abstract

AbstractIn this study, a natural dye from the flowers of Mussaenda erythrophylla extracted separately in ethanol and de-ionized water was employed as a photosensitizer in DSSCs. The quantitative phytochemical analyses were performed on both extracts. The existence of flavonoids (anthocyanin) and chlorophyll a pigments in the ethanol extract of the dye was confirmed by the UV–Visible spectroscopy. The stability study performed on the said ethanol extract confirmed that the dye extracted in ethanol was stable in the dark and did not degrade for nearly 50 days. The presence of the dye molecules and uniform adsorption of them on the P25-TiO2 surface were confirmed by fourier transform infrared spectroscopy and atomic force microscopy, respectively. Moreover, the influence of dye concentration and pH on the optical properties of the dye was also studied. The natural dye extracted in ethanol was employed in DSSCs, fabricated by utilizing the said dye sensitized P25-TiO2 photoanodes, $${I}^{-}$$ I - /$${I}_{3}^{-}$$ I 3 - electrolyte, and Pt counter electrode. Photovoltaic performances of the fabricated devices were determined under simulated irradiation with the intensity of 100 mWcm–2 using AM 1.5 filter. The device fabricated with the P25-TiO2 photoanode sensitized by the dye extracted in ethanol at pH = 5 exhibited the best power conversion efficiency (PCE) of 0.41% with the JSC of 0.98 mAcm–2 which could be attributed to the optimum light absorption in the visible region of solar spectrum by the chlorophyll a and anthocyanin molecules in the extracted natural dye.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3