Ru‐Induced Defect Engineering in Co3O4 Lattice for High Performance Electrochemical Reduction of Nitrate to Ammonium

Author:

Lim Maggie1,Ma Zhipeng1,O'Connell George1,Yuwono Jodie A.1,Kumar Priyank1,Jalili Rouhollah1,Amal Rose1,Daiyan Rahman1,Lovell Emma C.1ORCID

Affiliation:

1. Particles and Catalysis Research Laboratories and School of Chemical Engineering UNSW Sydney Sydney NSW 2052 Australia

Abstract

AbstractAmidst these growing sustainability concerns, producing NH4+ via electrochemical NO3 reduction reaction (NO3RR) emerges as a promising alternative to the conventional Haber‐Bosch process. In a pioneering approach, this study introduces Ru incorporation into Co3O4 lattices at the nanoscale and further couples it with electroreduction conditioning (ERC) treatment as a strategy to enhance metal oxide reducibility and induce oxygen vacancies, advancing NH4+ production from NO3RR. Here, supported by a suite of ex situ and in situ characterization measurements, the findings reveal that Ru enrichment promotes Co species reduction and oxygen vacancy formation. Further, as evidenced by the theoretical calculations, Ru integration lowers the energy barrier for oxygen vacancy formation, thereby facilitating a more energy‐efficient NO3RR‐to‐NH4+ pathway. Optimal catalytic activity is realized with a Ru loading of 10 at.% (named 10Ru/Co3O4), achieving a high NH4+ production rate (98 nmol s−1 cm−2), selectivity (97.5%) and current density (≈100 mA cm−2) at −1.0 V vs RHE. The findings not only provide insights into defect engineering via the incorporation of secondary sites but also lay the groundwork for innovative catalyst design aimed at improving NH4+ yield from NO3RR. This research contributes to the ongoing efforts to develop sustainable electrochemical processes for nitrogen cycle management.

Funder

Australian Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3