Self-Supervised Wavelet-Based Attention Network for Semantic Segmentation of MRI Brain Tumor

Author:

Anusooya Govindarajan1ORCID,Bharathiraja Selvaraj1ORCID,Mahdal Miroslav2ORCID,Sathyarajasekaran Kamsundher1ORCID,Elangovan Muniyandy3ORCID

Affiliation:

1. Vellore Institute of Technology, Chennai Campus, Chennai 600127, India

2. Department of Control Systems and Instrumentation, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic

3. Department of R&D, Bond Marine Consultancy, London EC1V 2NX, UK

Abstract

To determine the appropriate treatment plan for patients, radiologists must reliably detect brain tumors. Despite the fact that manual segmentation involves a great deal of knowledge and ability, it may sometimes be inaccurate. By evaluating the size, location, structure, and grade of the tumor, automatic tumor segmentation in MRI images aids in a more thorough analysis of pathological conditions. Due to the intensity differences in MRI images, gliomas may spread out, have low contrast, and are therefore difficult to detect. As a result, segmenting brain tumors is a challenging process. In the past, several methods for segmenting brain tumors in MRI scans were created. However, because of their susceptibility to noise and distortions, the usefulness of these approaches is limited. Self-Supervised Wavele- based Attention Network (SSW-AN), a new attention module with adjustable self-supervised activation functions and dynamic weights, is what we suggest as a way to collect global context information. In particular, this network’s input and labels are made up of four parameters produced by the two-dimensional (2D) Wavelet transform, which makes the training process simpler by neatly segmenting the data into low-frequency and high-frequency channels. To be more precise, we make use of the channel attention and spatial attention modules of the self-supervised attention block (SSAB). As a result, this method may more easily zero in on crucial underlying channels and spatial patterns. The suggested SSW-AN has been shown to outperform the current state-of-the-art algorithms in medical image segmentation tasks, with more accuracy, more promising dependability, and less unnecessary redundancy.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3