An intelligent LinkNet-34 model with EfficientNetB7 encoder for semantic segmentation of brain tumor

Author:

Sulaiman AdelORCID,Anand Vatsala,Gupta Sheifali,Al Reshan Mana SalehORCID,Alshahrani HaniORCID,Shaikh AsadullahORCID,Elmagzoub M. A.

Abstract

AbstractA brain tumor is an unnatural expansion of brain cells that can’t be stopped, making it one of the deadliest diseases of the nervous system. The brain tumor segmentation for its earlier diagnosis is a difficult task in the field of medical image analysis. Earlier, segmenting brain tumors was done manually by radiologists but that requires a lot of time and effort. Inspite of this, in the manual segmentation there was possibility of making mistakes due to human intervention. It has been proved that deep learning models can outperform human experts for the diagnosis of brain tumor in MRI images. These algorithms employ a huge number of MRI scans to learn the difficult patterns of brain tumors to segment them automatically and accurately. Here, an encoder-decoder based architecture with deep convolutional neural network is proposed for semantic segmentation of brain tumor in MRI images. The proposed method focuses on the image downsampling in the encoder part. For this, an intelligent LinkNet-34 model with EfficientNetB7 encoder based semantic segmentation model is proposed. The performance of LinkNet-34 model is compared with other three models namely FPN, U-Net, and PSPNet. Further, the performance of EfficientNetB7 used as encoder in LinkNet-34 model has been compared with three encoders namely ResNet34, MobileNet_V2, and ResNet50. After that, the proposed model is optimized using three different optimizers such as RMSProp, Adamax and Adam. The LinkNet-34 model has outperformed with EfficientNetB7 encoder using Adamax optimizer with the value of jaccard index as 0.89 and dice coefficient as 0.915.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3