A review of self‐supervised, generative, and few‐shot deep learning methods for data‐limited magnetic resonance imaging segmentation

Author:

Liu Zelong1,Kainth Komal1,Zhou Alexander1,Deyer Timothy W.23,Fayad Zahi A.14,Greenspan Hayit14,Mei Xueyan14

Affiliation:

1. BioMedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York New York USA

2. East River Medical Imaging New York New York USA

3. Department of Radiology Cornell Medicine New York New York USA

4. Department of Diagnostic, Molecular, and Interventional Radiology Icahn School of Medicine at Mount Sinai New York New York USA

Abstract

AbstractMagnetic resonance imaging (MRI) is a ubiquitous medical imaging technology with applications in disease diagnostics, intervention, and treatment planning. Accurate MRI segmentation is critical for diagnosing abnormalities, monitoring diseases, and deciding on a course of treatment. With the advent of advanced deep learning frameworks, fully automated and accurate MRI segmentation is advancing. Traditional supervised deep learning techniques have advanced tremendously, reaching clinical‐level accuracy in the field of segmentation. However, these algorithms still require a large amount of annotated data, which is oftentimes unavailable or impractical. One way to circumvent this issue is to utilize algorithms that exploit a limited amount of labeled data. This paper aims to review such state‐of‐the‐art algorithms that use a limited number of annotated samples. We explain the fundamental principles of self‐supervised learning, generative models, few‐shot learning, and semi‐supervised learning and summarize their applications in cardiac, abdomen, and brain MRI segmentation. Throughout this review, we highlight algorithms that can be employed based on the quantity of annotated data available. We also present a comprehensive list of notable publicly available MRI segmentation datasets. To conclude, we discuss possible future directions of the field—including emerging algorithms, such as contrastive language‐image pretraining, and potential combinations across the methods discussed—that can further increase the efficacy of image segmentation with limited labels.

Funder

National Center for Advancing Translational Sciences

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3