DRs-UNet: A Deep Semantic Segmentation Network for the Recognition of Active Landslides from InSAR Imagery in the Three Rivers Region of the Qinghai–Tibet Plateau

Author:

Chen Ximing,Yao Xin,Zhou Zhenkai,Liu Yang,Yao Chuangchuang,Ren Kaiyu

Abstract

At present, Synthetic Aperture Radar Interferometry (InSAR) has been an important technique for active landslides recognition in the geological survey field. However, the traditional interpretation method through human–computer interaction highly relies on expert experience, which is time-consuming and subjective. To solve the problem, this study designed an end-to-end semantic segmentation network, called deep residual shrinkage U-Net (DRs-UNet), to automatically extract potential active landslides in InSAR imagery. The proposed model was inspired by the structure of U-Net and adopted a residual shrinkage building unit (RSBU) as the feature extraction block in its encoder part. The method of this study has three main advantages: (1) The RSBU in the encoder part incorporated with soft thresholding can reduce the influence of noise from InSAR images. (2) The residual connection of the RSBU makes the training of the network easier and accelerates the convergency process. (3) The feature fusion of the corresponding layers between the encoder and decoder effectively improves the classification accuracy. Two widely used networks, U-Net and SegNet, were trained under the same experiment environment to compare with the proposed method. The experiment results in the test set show that our method achieved the best performance; specifically, the F1 score is 1.48% and 4.1% higher than U-Net and SegNet, which indicates a better balance between precision and recall. Additionally, our method has the best IoU score of over 90%. Furthermore, we applied our network to a test area located in Zhongxinrong County along Jinsha River where landslides are highly evolved. The quantitative evaluation results prove that our method is effective for the automatic recognition of potential active landslide hazards from InSAR imagery.

Funder

China Three Gorges Corporation

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3