Robust Landslide Recognition Using UAV Datasets: A Case Study in Baihetan Reservoir

Author:

Li Zhi-Hai1,Shi An-Chi12ORCID,Xiao Huai-Xian3,Niu Zi-Hao1,Jiang Nan3ORCID,Li Hai-Bo4,Hu Yu-Xiang4

Affiliation:

1. Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China

2. Zhejiang Huadong Geotechnical Investigation & Design Institute Corporation Limited, Hangzhou 310004, China

3. College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China

4. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

Abstract

The task of landslide recognition focuses on extracting the location and extent of landslides over large areas, providing ample data support for subsequent landslide research. This study explores the use of UAV and deep learning technologies to achieve robust landslide recognition in a more rational, simpler, and faster manner. Specifically, the widely successful DeepLabV3+ model was used as a blueprint and a dual-encoder design was introduced to reconstruct a novel semantic segmentation model consisting of Encoder1, Encoder2, Mixer and Decoder modules. This model, named DeepLab for Landslide (DeepLab4LS), considers topographic information as a supplement to DeepLabV3+, and is expected to improve the efficiency of landslide recognition by extracting shape information from relative elevation, slope, and hillshade. Additionally, a novel loss function term—Positive Enhanced loss (PE loss)—was incorporated into the training of DeepLab4LS, significantly enhancing its ability to understand positive samples. DeepLab4LS was then applied to a UAV dataset of Baihetan reservoir, where comparative tests demonstrated its high performance in landslide recognition tasks. We found that DeepLab4LS has a stronger inference capability for landslides with less distinct boundary information, and delineates landslide boundaries more precisely. More specifically, in terms of evaluation metrics, DeepLab4LS achieved a mean intersection over union (mIoU) of 76.0% on the validation set, which is a substantial 5.5 percentage point improvement over DeepLabV3+. Moreover, the study also validated the rationale behind the dual-encoder design and the introduction of PE loss through ablation experiments. Overall, this research presents a robust semantic segmentation model for landslide recognition that considers both optical and topographic semantics of landslides, emulating the recognition pathways of human experts, and is highly suitable for landslide recognition based on UAV datasets.

Funder

National Natural Science Foundation of China

Sichuan Youth Science and Technology Innovation Research Team Project

Key Science and Technology Plan Project of PowerChina Huadong Engineering Corporation Limited

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3