Author:
Jeyasenthil Ramamurthy,Choi Seung-Bok
Abstract
This paper proposes a systematic feedback controller design methodology for multi-input multi-output (MIMO) uncertain systems using the quantitative feedback theory (QFT). To achieve this goal, the model matching problem was considered and the inversion feedforward controller was designed to improve control performance while reducing the demand on feedback control alone. The proposed method is formulated based on the concept of equivalent disturbance attenuation (EDA) approach in which the uncertain system problem is converted into an external disturbance rejection problem based on a nominal system. This proposed approach exhibiting non-sequential design method result in the suboptimal solution showing design simplicity and computational efficiency compared to the existing method. In order to validate the effectiveness of the proposed control methodology, the MIMO magnetic levitation system as adopted and control performances such as time response were presented in both time and frequency domains.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献