Soil Temperature Dynamics at Hillslope Scale—Field Observation and Machine Learning-Based Approach

Author:

Nanda Aliva,Sen SumitORCID,Sharma Awshesh Nath,Sudheer K. P.

Abstract

Soil temperature plays an important role in understanding hydrological, ecological, meteorological, and land surface processes. However, studies related to soil temperature variability are very scarce in various parts of the world, especially in the Indian Himalayan Region (IHR). Thus, this study aims to analyze the spatio-temporal variability of soil temperature in two nested hillslopes of the lesser Himalaya and to check the efficiency of different machine learning algorithms to estimate soil temperature in the data-scarce region. To accomplish this goal, grassed (GA) and agro-forested (AgF) hillslopes were instrumented with Odyssey water level and decagon soil moisture and temperature sensors. The average soil temperature of the south aspect hillslope (i.e., GA hillslope) was higher than the north aspect hillslope (i.e., AgF hillslope). After analyzing 40 rainfall events from both hillslopes, it was observed that a rainfall duration of greater than 7.5 h or an event with an average rainfall intensity greater than 7.5 mm/h results in more than 2 °C soil temperature drop. Further, a drop in soil temperature less than 1 °C was also observed during very high-intensity rainfall which has a very short event duration. During the rainy season, the soil temperature drop of the GA hillslope is higher than the AgF hillslope as the former one infiltrates more water. This observation indicates the significant correlation between soil moisture rise and soil temperature drop. The potential of four machine learning algorithms was also explored in predicting soil temperature under data-scarce conditions. Among the four machine learning algorithms, an extreme gradient boosting system (XGBoost) performed better for both the hillslopes followed by random forests (RF), multilayer perceptron (MLP), and support vector machine (SVMs). The addition of rainfall to meteorological and meteorological + soil moisture datasets did not improve the models considerably. However, the addition of soil moisture to meteorological parameters improved the model significantly.

Funder

Science and Engineering Research Board

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3