Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine
Reference64 articles.
1. Abdullah, S. S., Malek, M. A., Abdullah, N. S., Kisi, O., & Yap, K. S. (2015). Extreme learning machines: A new approach for prediction of reference evapotranspiration. Journal of Hydrology, 527, 184–195.
2. Ahmed, A. M., & Shah, S. M. A. (2017). Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River. Journal of King Saud University-Engineering Sciences, 29(3), 237–243.
3. Araghinejad, S. (2013). Data-driven modeling: Using MATLAB® in water resources and environmental engineering (Vol. 67). Springer Science & Business Media.
4. Ay, M., & Kisi, O. (2014). Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques. Journal of Hydrology, 511, 279–289.
5. Bai, Y., Scott, T., & Min, Q. (2013). Climate change implications of soil temperature in the Mojave Desert, USA. Frontiers in Earth Science, 1–7.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献