Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada

Author:

Zeynoddin Mohammad1ORCID,Bonakdari Hossein2ORCID,Gumiere Silvio José1ORCID,Rousseau Alain N.3

Affiliation:

1. Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada

2. Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada

3. Institut National de la Recherche Scientifique-Eau Terre Environnement INRS-ETE, Quebec, QC G1K 9A9, Canada

Abstract

The profound impact of soil temperature (TS) on crucial environmental processes, including water infiltration, subsurface movement, plant growth, and its influence on land–atmosphere dynamics, cannot be undermined. While satellite and land surface model-based data are valuable in data-sparse areas, they necessitate innovative solutions to bridge gaps and overcome temporal delays arising from their dependence on atmospheric and hydro–meteorological factors. This research introduces a viable technique to address the lag in the Famine Early Warning Network Land Data Assimilation System (FLDAS). Notably, this approach exhibits versatility, proving highly effective in analyzing datasets characterized by significant seasonal trends, and its application holds immense value in watershed-scaled hydrological research. Leveraging the enhanced state-space (SS) method for forecasting in the FLDAS, this technique harnesses TS datasets collected over time at various depths (0–10 cm, 10–40 cm, and 40–100 cm), employing a multiplicative SS model for modeling purposes. By employing the 1-step, 6-step, and 12-step-ahead models at different depths and 2 locations in Quebec, Canada, the outcomes showcased a performance with an average coefficient of determination (R2) of 0.88 and root mean squared error (RMSE) of 2.073 °C for the dynamic model, R2 of 0.834 and RMSE of 2.979 °C for the 6-step-ahead model, and R2 of 0.921 and RMSE of 1.865 °C for the 12-step-ahead model. The results revealed that as the prediction horizon expands and the length of the input data increases, the accuracy of predictions progressively improves, indicating that this model becomes increasingly accurate over time.

Funder

Fonds de recherche du Québec–Nature et technologies

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3