Abstract
The timely and accurate detection of wheat lodging at a large scale is necessary for loss assessments in agricultural insurance claims. Most existing deep-learning-based methods of wheat lodging detection use data from unmanned aerial vehicles, rendering monitoring wheat lodging at a large scale difficult. Meanwhile, the edge feature is not accurately extracted. In this study, a semantic segmentation network model called the pyramid transposed convolution network (PTCNet) was proposed for large-scale wheat lodging extraction and detection using GaoFen-2 satellite images with high spatial resolutions. Multi-scale high-level features were combined with low-level features to improve the segmentation’s accuracy and to enhance the extraction sensitivity of wheat lodging areas in the proposed model. In addition, four types of vegetation indices and three types of edge features were added into the network and compared to the increment in the segmentation’s accuracy. The F1 score and the intersection over union of wheat lodging extraction reached 85.31% and 74.38% by PTCNet, respectively, outperforming other compared benchmarks, i.e., SegNet, PSPNet, FPN, and DeepLabv3+ networks. PTCNet can achieve accurate and large-scale extraction of wheat lodging, which is significant in the fields of loss assessment and agricultural insurance claims.
Funder
Xuzhou Key R&D Program
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献