TriNet: Exploring More Affordable and Generalisable Remote Phenotyping with Explainable Deep Models

Author:

Beltrame Lorenzo1ORCID,Salzinger Jules1ORCID,Koppensteiner Lukas J.2,Fanta-Jende Phillipp1ORCID

Affiliation:

1. Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, 1210 Vienna, Austria

2. Saatzucht Edelhof GmbH, 3910 Zwettl, Austria

Abstract

In this study, we propose a scalable deep learning approach to automated phenotyping using UAV multispectral imagery, exemplified by yellow rust detection in winter wheat. We adopt a high-granularity scoring method (1 to 9 scale) to align with international standards and plant breeders’ needs. Using a lower spatial resolution (60 m flight height at 2.5 cm GSD), we reduce the data volume by a factor of 3.4, making large-scale phenotyping faster and more cost-effective while obtaining results comparable to those of the state-of-the-art. Our model incorporates explainability components to optimise spectral bands and flight schedules, achieving top-three accuracies of 0.87 for validation and 0.67 and 0.70 on two separate test sets. We demonstrate that a minimal set of bands (EVI, Red, and GNDVI) can achieve results comparable to more complex setups, highlighting the potential for cost-effective solutions. Additionally, we show that high performance can be maintained with fewer time steps, reducing operational complexity. Our interpretable model components improve performance through regularisation and provide actionable insights for agronomists and plant breeders. This scalable and explainable approach offers an efficient solution for yellow rust phenotyping and can be adapted for other phenotypes and species, with future work focusing on optimising the balance between spatial, spectral, and temporal resolutions.

Funder

Government of Lower Austria

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3