The Cost of Urban Renewal: Annual Construction Waste Estimation via Multi-Scale Target Information Extraction and Attention-Enhanced Networks in Changping District, Beijing

Author:

Huang Lei1ORCID,Lin Shaofu1ORCID,Liu Xiliang1ORCID,Wang Shaohua2,Chen Guihong3,Mei Qiang4,Fu Zhe5

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing 100124, China

2. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

3. Beijing Big Data Centre, Chaoyang District, Beijing 100101, China

4. Navigation College, Jimei University, Xiamen 361021, China

5. Administrative Examination and Approval Bureau of the Beijing Economic-Technological Development Area, Beijing 100176, China

Abstract

Construction waste is an inevitable byproduct of urban renewal, causing severe pressure on the environment, health, and ecology. Accurately estimating the production of construction waste is crucial for assessing the consumption of urban renewal. However, traditional manual estimation methods rely heavily on statistical data and historical experience, which lack flexibility in practical applications and are time-consuming and labor-intensive. In addition, their accuracy and timeliness need to be improved urgently. Fortunately, with the advantages of high-resolution remote sensing images (HRSIs) such as strong timeliness, large amounts of information, and macroscopic observations, they are suitable for the large-scale dynamic change detection of construction waste. However, the existing deep learning models have a relatively poor ability to extract and fuse features for small and multi-scale targets, and it is difficult to deal with irregularly shaped and fragmented detection areas. Therefore, this study proposes a Multi-scale Target Attention-Enhanced Network (MT-AENet), which is used to dynamically track and detect changes in buildings and construction waste disposal sites through HRSIs and accurately estimate the annual production of urban construction waste. The MT-AENet introduces a novel encoder–decoder architecture. In the encoder, ResNet-101 is utilized to extract high-level semantic features. A depthwise separable-atrous spatial pyramid pooling (DS-ASPP) module with different dilation rates is constructed to address insufficient receptive fields, resolving the issue of discontinuous holes when extracting large targets. A dual-attention mechanism module (DAMM) is employed to better preserve positional and channel details. In the decoder, multi-scale feature fusion (MS-FF) is utilized to capture contextual information, integrating shallow and intermediate features of the backbone network, thereby enhancing extraction capabilities in complex scenes. The MT-AENet is used to extract buildings and construction waste at different periods in the study area, and the actual production and landfill volume of construction waste are calculated based on area changes, indirectly measuring the rate of urban construction waste resource conversion. The experimental results in Changping District, Beijing demonstrate that the MT-AENet outperforms existing baseline networks in extracting buildings and construction waste. The results of this study are validated according to government statistical standards, providing a promising direction for efficiently analyzing the consumption of urban renewal.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3