Shortwave Infrared Multi-Angle Polarization Imager (MAPI) Onboard Fengyun-3 Precipitation Satellite for Enhanced Cloud Characterization

Author:

Wang Haofei,Zhang PengORCID,Yin Dekui,Li ZhengqiangORCID,Shang Huazhe,Xu Hanlie,Shang Jian,Gu Songyan,Hu Xiuqing

Abstract

Accurate measurement of the radiative properties of clouds and aerosols is of great significance to global climate change and numerical weather prediction. The multi-angle polarization imager (MAPI) onboard the Fengyun-3 precipitation satellite, planned to be launched in 2023, will provide the multi-angle, multi-shortwave infrared (SWIR) channels and multi-polarization satellite observation of clouds and aerosols. MAPI operates in a non-sun-synchronized inclined orbit and provides images with a spatial resolution of 3 km (sub-satellite) and a swath of 700 km. The observation channels of the MAPI include 1030 nm, 1370 nm, and 1640 nm polarization channels and corresponding non-polarization channels, which provide observation information from 14 angles. In-flight radiometric and polarimetric calibration strategies are introduced, aiming to achieve radiometric accuracy of 5% and polarimetric accuracy of 2%. Simulation experiments show that the MAPI has some unique advantages of characterizing clouds and aerosols. For cloud observation, the polarization phase functions of the 1030 nm and 1640 nm around the scattering angle of a cloudbow show strong sensitivity to cloud droplet radius and effective variance. In addition, the polarized observation of the 1030 nm and 1640 nm has a higher content of information for aerosol than VIS-NIR. Additionally, the unique observation geometry of non-sun-synchronous orbits can provide more radiometric and polarization information with expanded scattering angles. Thus, the multi-angle polarization measurement of the new SWIR channel onboard Fengyun-3 can optimize cloud phase state identification and cloud microphysical parameter inversion, as well as the retrieval of aerosols. The results obtained from the simulations will provide support for the design of the next generation of polarized imagers of China.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3