A Super-Resolution Reconstruction Method for Infrared Polarization Images with Sparse Representation of Over-Complete Basis Sets

Author:

Ma Yizhe123,Lei Teng123,Wang Shiyong13,Yang Zhengye123,Li Linhan123,Qu Weidong4,Li Fanming13

Affiliation:

1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Infrared Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai 200083, China

4. Key Laboratory of Electro-Optical Countermeasures Test & Evaluation Technology, Luoyang 471003, China

Abstract

The spatial resolution of an infrared focal plane polarization detection system is limited by the structure of the detector, resulting in lower resolution than the actual array size. To overcome this limitation and improve imaging resolution, we propose an infrared polarization super-resolution reconstruction model based on sparse representation, optimized using Stokes vector images. This model forms the basis for our method aimed at achieving super-resolution reconstruction of infrared polarization images. In this method, we utilize the proposed model to initially reconstruct low-resolution images in blocks. Subsequently, we perform a division by weight, followed by iterative back projection to enhance details and achieve high-resolution reconstruction results. As a supplement, we establish a near-real-time short-wave infrared time-sharing polarization system for data collection. The dataset was acquired to gather prior knowledge of the over-complete basis set and to generate a series of simulated focal plane images. Simulation experimental results demonstrate the superiority of our method over several advanced methods in objective evaluation indexes, exhibiting strong noise robustness in quantitative experiments. Finally, to validate the practical application of our method, we establish a split-focal plane polarization short-wave infrared system for scene testing. Experimental results confirm the effective processing of actual captured data by our method.

Funder

National Pre-research Program during the 14th Five-Year Plan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3