Optimized strategies of cloud droplet distribution retrieval using satellite multi-directional polarimetric optical measurements: information content approach

Author:

Yu Haixiao1,Sun Xiaobing,Ti Rufang,Tu Bihai,Fan Yizhe2,Wang Yuxuan1,Wang Zeling1,Wei Yichen1,Liu Xiao,Huang Honglian,Li Yiqi1,Wang Yuyao1

Affiliation:

1. University of Science and Technology of China

2. Henan Polytechnic University

Abstract

Multi-directional polarized optical sensors are increasingly vital in passive remote sensing, deepening our understanding of global cloud properties. Nevertheless, uncertainty lingers on how these observations can contribute to our knowledge of cloud diversity. The variability in cloud PSD (Particle Size Distribution) significantly influences a wide array of cloud characteristics, while unidentified factors in RT (Radiative Transfer) may introduce errors into the cloud PSD retrieval algorithm. Therefore, establishing unified evaluation criteria for both optical device configuration and inversion methods is crucial. Our study, based on Bayesian theory and RT, assesses the information content of both cloud effective radius and effective variance retrieval, along with the key factors affecting their retrieval in multi-directional polarized observations, using the calculation of DFS (Degree of Freedom for Signals).We consider the process of solar incidence, cloud scattering, and sensor reception, and discuss the impact of various sensor configurations, cloud characteristics, and other components on the retrieval of cloud PSD. Correspondingly, we observed a 48% improvement in the information content of cloud PSD with the incorporation of multi-directional polarized measurements in the rainbow region. Cloud droplet concentration significantly influences inversion, but its PSD does not cause monotonic linear interference on information content. The blending of particle mixtures with different PSD has a significant negative impact on DFS. In cases where the AOD (Aerosol Optical Depth) is less than 0.5 and the COT (Cloud Optical Thickness) exceeds 5, the influence of aerosol and surface contributions on inversion can be neglected. Our findings would serve as a foundation for future instrument design improvements and enhancements to retrieval algorithms.

Funder

China Center for Resource Satellite Data and Applications Project

China High-resolution Earth Observation System

Key Laboratory Project of Chinese Academy of Sciences

Aviation Science and Technology Innovation Application Research

Aerospace Science and Technology Innovation Application Research Project

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3