Effects of Different Aboveground Structural Parts of Grass Strips on the Sediment-Trapping Process

Author:

Luo Mingjie,Pan Chengzhong,Cui Yongsheng,Guo YahuiORCID,Wu Yun

Abstract

Grass strips can decrease erosion, trap sediment in silt-laden water flowing downhill, and control nonpoint source pollution. Determining the effects of different parts of grass strips on silt-laden overland flow will improve our understanding of sediment trapping by grass strips with different structures. Sediment trapping by grass strips was studied using a 5° slope, 30 L min−1 m−1 flow rate, 120 g L−1 sediment concentration, and different aboveground components of grass strips (complete grass, removed green grass, and removed green and withered grass). The whole overland flow process was monitored. Meanwhile, the runoff sediment samples at the outlet were collected and measured. Sediment trapping by aboveground grass parts was quantified at different stages. Of the soil bed surface, green grass, and withered grass, the soil bed surface dominated sediment trapping in the initial stage of the sediment-trapping process, contributing about 90% of total sediment deposition in the first 5 min. As the sediment-trapping process continued, the effect of the soil bed surface weakened, and the green grass played a major role at the later stage of sediment trapping. The ratio of the soil bed surface, green grass, and withered grass contributions to total sediment deposition at the stable stage of the experiments was approximately 3:5:2. The results will help assess the effects of vegetation restoration on sediment transport in entire watersheds.

Funder

National Natural Science Foundation of China Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3