Characteristics of the Sediment Transport Process in Vegetation Hillslopes under Different Flow Rates

Author:

Luo Mingjie1,Pan Chengzhong2ORCID,Peng Jun1,Wang Li1

Affiliation:

1. School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China

2. School of Water Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China

Abstract

Vegetation filter strips (VFSs) have always been an important measure to control agricultural soil erosion, especially in mountainous and hilly areas with more sloping farmland. To investigate the mechanism of the sediment-trapping process by VFSs, a series of tests were conducted with four gradients of flow rate, 7.5–45 L min−1 m−1, and two different sediment concentrations of 40 and 120 g L−1. The whole process of overland flow was monitored, and sediment and particle size samples from the inflow and outflow were collected and measured. The results showed that the changes in sediment concentration did not significantly affect the corresponding coefficients in the power function relationship between overland flow rate and velocity. Using the Reynolds number alone cannot effectively indicate the flow pattern of overland flow on vegetation hillslopes. The peak particle size and linear function were effective in describing the relationship between sediment particle composition and delivery rate during the sediment-trapping process by VFSs. During the sediment-trapping process, the sediment-trapping capacity of VFSs continued to decrease. The increase in sediment discharge was accompanied by a higher proportion of coarse particles. Under the same flow rate conditions, when the sediment concentration was higher, the coarse particles and their proportion also increased faster. Therefore, using only a certain particle size threshold to distinguish suspended and transported sediment may lead to inaccurate estimation of the sediment-trapping performance of VFSs. This study deepened the understanding of the mechanism of water–sediment processes on vegetation hillslopes and promoted the widespread and efficient application of VFSs management technology.

Funder

Initial Scientific Research Fund Project of Chuzhou University

National Natural Science Foundation of China Project

Natural Science Research Project of Anhui Educational Committee

Humanity and Social Science Research Project of Anhui Educational Committee

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3