Vegetation patterns affect soil aggregate loss during water erosion

Author:

Zhao Zhun1,Shi Peng12ORCID,Bai Lulu1,Dong Jingbing1,Li Zhanbin12,Li Peng12ORCID,Wang Wen1,Cui Lingzhou3

Affiliation:

1. State Key Laboratory of Eco‐hydraulics in Northwest Arid Region of China Xi'an University of Technology Xi'an China

2. Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions Xi'an China

3. College of Life and Environmental Science Wenzhou University Wenzhou China

Abstract

AbstractSoil aggregates are important for improving the soil quality and structure. Soil erosion causes the fragmentation and migration of soil aggregates. Vegetation restoration is an effective method for controlling soil erosion, and the vegetation distribution on the slope changes the hydrological processes. However, there is a dearth of studies investigating the regulation of vegetation patterns in relation to soil aggregate loss. This study employed a physical model of a slope gully system to examine the characteristics of soil aggregates loss during erosion processes under four distinct vegetation patterns: no vegetation (pattern A), up‐slope vegetation (pattern B), middle‐slope vegetation (pattern C), and down‐slope vegetation (pattern D), utilizing simulated rainfall experiments. The results showed that under various patterns of vegetation, the loss of soil aggregates is predominantly driven by microaggregates (<0.25 mm), A (65.2%) < B (72.4%) < C (77.7%) < D (87.7%). On the contrary, there is an opposite trend of change observed in macroaggregates(>0.25 mm). The vegetation pattern had different effects on the enrichment rate of aggregates in sediments: the enrichment ratio of macroaggregates decreased by 20.9%–64.7% and the enrichment ratio of microaggregates increased by 11.1%–34.5%. The cumulative loss of soil aggregates and the cumulative runoff volume can be described by a linear equation: y = ax + b, where ‘a’ denotes the rate of soil aggregate loss. Vegetation patterns had the capacity to decrease the rate of macroaggregate loss. Among these patterns, pattern D exhibits the lowest rate, followed by patterns C, B, and A. These results indicated that down‐slope vegetation pattern is effective in reducing the loss of soil aggregates especially macroaggregates.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3