Abstract
It is an important branch of erosion research to control soil erosion on eroded gullies and slopes by using vegetation filter strip. Several simulated rainfall experiments were carried out in soil tanks filled with loess sandy loam taken from a typical eroded gully area with less vegetation coverage in Yanghe hilly basin in Xuanhua District, Zhangjiakou City, Hebei Province. The soil and water conservation effects of two different vegetation setting modes were compared under the same vegetation strip width and different rainfall intensities and slopes. During the rainfall process, the changes of runoff and sediment yield and nutrient loss were not stable, but the same erosion index had similar variation trends under different combinations of rainfall intensity, slope and vegetation coverage. Multiple regression results showed that runoff and sediment production in eroded gully can be effectively reduced through vegetation filter strips, which are jointly affected by rainfall intensity and slope. There was no significant difference in the amount of runoff and sediment yield between the two vegetation setting modes. Rainfall intensity and slope gradient showed different strengths of impact on nutrient loss. Through cluster analysis, the results showed that the impacts of rainfall intensity, slope gradient and vegetation setting modes on soil and water loss on slope can be equal or offset. In general, setting vegetation filter strips can offset the effects of rainfall intensity and slope, but vegetation regulation of erosion was not obvious under extreme rainfall and steep slope conditions. What’s more, rainfall intensity had a dominant effect on erosion. The results in this research may provide reference for practical application of vegetation filter strips on eroded slopes.
Funder
National Science and Technology Major Project for Water Pollution Control and Treatment
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献