UAVs in Disaster Management: Application of Integrated Aerial Imagery and Convolutional Neural Network for Flood Detection

Author:

Munawar Hafiz SulimanORCID,Ullah FahimORCID,Qayyum Siddra,Khan Sara Imran,Mojtahedi Mohammad

Abstract

Floods have been a major cause of destruction, instigating fatalities and massive damage to the infrastructure and overall economy of the affected country. Flood-related devastation results in the loss of homes, buildings, and critical infrastructure, leaving no means of communication or travel for the people stuck in such disasters. Thus, it is essential to develop systems that can detect floods in a region to provide timely aid and relief to stranded people, save their livelihoods, homes, and buildings, and protect key city infrastructure. Flood prediction and warning systems have been implemented in developed countries, but the manufacturing cost of such systems is too high for developing countries. Remote sensing, satellite imagery, global positioning system, and geographical information systems are currently used for flood detection to assess the flood-related damages. These techniques use neural networks, machine learning, or deep learning methods. However, unmanned aerial vehicles (UAVs) coupled with convolution neural networks have not been explored in these contexts to instigate a swift disaster management response to minimize damage to infrastructure. Accordingly, this paper uses UAV-based aerial imagery as a flood detection method based on Convolutional Neural Network (CNN) to extract flood-related features from the images of the disaster zone. This method is effective in assessing the damage to local infrastructures in the disaster zones. The study area is based on a flood-prone region of the Indus River in Pakistan, where both pre-and post-disaster images are collected through UAVs. For the training phase, 2150 image patches are created by resizing and cropping the source images. These patches in the training dataset train the CNN model to detect and extract the regions where a flood-related change has occurred. The model is tested against both pre-and post-disaster images to validate it, which has positive flood detection results with an accuracy of 91%. Disaster management organizations can use this model to assess the damages to critical city infrastructure and other assets worldwide to instigate proper disaster responses and minimize the damages. This can help with the smart governance of the cities where all emergent disasters are addressed promptly.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aerial Imagery of Natural Disaster-Affected Areas (AINDAA) Dataset for Semantic Segmentation and Natural Disaster Assessment;2023 IEEE 7th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE);2023-11-29

2. Description of Artificial Intelligence Models in Sustainable Water Resource Management;Management, Technology, and Economic Growth in Smart and Sustainable Cities;2023-10-24

3. Nonlinear Fault-Tolerant Control of an Aerial Four-Rotor Vehicle;2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE);2023-10-12

4. Vehicle Detection and Classification via YOLOv8 and Deep Belief Network over Aerial Image Sequences;Sustainability;2023-10-08

5. A Connectivity Aware Path Planning for a Fleet of UAVs in an Urban Environment;IEEE Transactions on Intelligent Transportation Systems;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3