A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations

Author:

Ding GuanwenORCID,Liu Yubin,Zang Xizhe,Zhang XueheORCID,Liu GangfengORCID,Zhao Jie

Abstract

In manufacturing, traditional task pre-programming methods limit the efficiency of human–robot skill transfer. This paper proposes a novel task-learning strategy, enabling robots to learn skills from human demonstrations flexibly and generalize skills under new task situations. Specifically, we establish a markerless vision capture system to acquire continuous human hand movements and develop a threshold-based heuristic segmentation algorithm to segment the complete movements into different movement primitives (MPs) which encode human hand movements with task-oriented models. For movement primitive learning, we adopt a Gaussian mixture model and Gaussian mixture regression (GMM-GMR) to extract the optimal trajectory encapsulating sufficient human features and utilize dynamical movement primitives (DMPs) to learn for trajectory generalization. In addition, we propose an improved visuo-spatial skill learning (VSL) algorithm to learn goal configurations concerning spatial relationships between task-relevant objects. Only one multioperation demonstration is required for learning, and robots can generalize goal configurations under new task situations following the task execution order from demonstration. A series of peg-in-hole experiments demonstrate that the proposed task-learning strategy can obtain exact pick-and-place points and generate smooth human-like trajectories, verifying the effectiveness of the proposed strategy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3