A Trajectory Optimisation-Based Incremental Learning Strategy for Learning from Demonstration

Author:

Wang Yuqi12,Li Weidong31,Liang Yuchen4ORCID

Affiliation:

1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

2. School of Engineering, University of Birmingham, Birmingham B15 2TT, UK

3. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

4. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

The insufficient generalisation capability of the conventional learning from demonstration (LfD) model necessitates redemonstrations. In addition, retraining the model can overwrite existing knowledge, making it impossible to perform previously acquired skills in new application scenarios. These are not economical and efficient. To address the issues, in this study, a broad learning system (BLS) and probabilistic roadmap (PRM) are integrated with dynamic movement primitive (DMP)-based LfD. Three key innovations are proposed in this paper: (1) segmentation and extended demonstration: a 1D-based topology trajectory segmentation algorithm (1D-SEG) is designed to divide the original demonstration into several segments. Following the segmentation, a Gaussian probabilistic roadmap (G-PRM) is proposed to generate an extended demonstration that retains the geometric features of the original demonstration. (2) DMP modelling and incremental learning updating: BLS-based incremental learning for DMP (Bi-DMP) is performed based on the constructed DMP and extended demonstration. With this incremental learning approach, the DMP is capable of self-updating in response to task demands, preserving previously acquired skills and updating them without training from scratch. (3) Electric vehicle (EV) battery disassembly case study: this study developed a solution suitable for EV battery disassembly and established a decommissioned battery disassembly experimental platform. Unscrewing nuts and battery cell removal are selected to verify the effectiveness of the proposed algorithms based on the battery disassembly experimental platform. In this study, the effectiveness of the algorithms designed in this paper is measured by the success rate and error of the task execution. In the task of unscrewing nuts, the success rate of the classical DMP is 57.14% and the maximum error is 2.760 mm. After the optimisation of 1D-SEG, G-PRM, and Bi-DMP, the success rate of the task is increased to 100% and the maximum error is reduced to 1.477 mm.

Funder

National Natural Science of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3