Antimicrobial Activity of Biogenic Metal Oxide Nanoparticles and Their Synergistic Effect on Clinical Pathogens

Author:

Francis Dali Vilma1ORCID,Jayakumar Manju Nidagodu12ORCID,Ahmad Hafiz34ORCID,Gokhale Trupti1ORCID

Affiliation:

1. Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, Dubai P.O. Box 345055, United Arab Emirates

2. Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

3. Department of Medical Microbiology & Immunology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates

4. Adjunct Clinical Microbiologist and Head of Molecular Division, RAK Hospital, Ras Al Khaimah P.O. Box 12973, United Arab Emirates

Abstract

The rising prevalence of antibiotic-resistance is currently a grave issue; hence, novel antimicrobial agents are being explored and developed to address infections resulting from multiple drug-resistant pathogens. Biogenic CuO, ZnO, and WO3 nanoparticles can be considered as such agents. Clinical isolates of E. coli, S. aureus, methicillin-resistant S. aureus (MRSA), and Candida albicans from oral and vaginal samples were treated with single and combination metal nanoparticles incubated under dark and light conditions to understand the synergistic effect of the nanoparticles and their photocatalytic antimicrobial activity. Biogenic CuO and ZnO nanoparticles exhibited significant antimicrobial effects under dark incubation which did not alter on photoactivation. However, photoactivated WO3 nanoparticles significantly reduced the number of viable cells by 75% for all the test organisms, thus proving to be a promising antimicrobial agent. Combinations of CuO, ZnO, and WO3 nanoparticles demonstrated synergistic action as a significant increase in their antimicrobial property (>90%) was observed compared to the action of single elemental nanoparticles. The mechanism of the antimicrobial action of metal nanoparticles both in combination and in isolation was assessed with respect to lipid peroxidation due to ROS (reactive oxygen species) generation by measuring malondialdehyde (MDA) production, and the damage to cell integrity using live/dead staining and quantitating with the use of flow cytometry and fluorescence microscopy.

Funder

BITS Pilani Dubai Campus

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3