SelTox: Discovering the Capacity of Selectively Antimicrobial Nanoparticles for Targeted Eradication of Pathogenic Bacteria

Author:

Jyakhwo Susan1ORCID,Bocharova Valentina1,Serov Nikita1,Dmitrenko Andrei1,Vinogradov Vladimir V.1ORCID

Affiliation:

1. International Institute “Solution Chemistry of Advanced Materials and Technologies” ITMO University Saint‐Petersburg 191002 Russian Federation

Abstract

AbstractFor years, researchers have searched for novel antibiotics to combat pathogenic infections. However, antibiotics lack specificity, harm beneficial microbes, and cause the emergence of antibiotic‐resistant strains. This study proposes an innovative approach to selectively eradicate pathogenic bacteria with a minimal effect on non‐pathogenic ones by discovering selectively antimicrobial nanoparticles. To achieve this, a comprehensive database is compiled to characterize nanoparticles and their antibacterial activity. Then, CatBoost regression models are trained for predicting minimal concentration (MC) and zone of inhibition (ZOI). The models achieve a ten‐fold cross‐validation (CV) R2 score of 0.82 and 0.84 with root mean square error (RMSE) of 0.46 and 2.41, respectively. Finally, a machine learning (ML) reinforced genetic algorithm (GA) is developed to identify the best‐performing selective antibacterial NPs. As a proof of concept, a selectively antibacterial nanoparticle, CuO, is identified for targeted eradication of a pathogenic bacteria, Staphylococcus aureus. A difference in minimal bactericidal concentration (MBC) of 392.85 µg mL−1 is achieved when compared to non‐pathogenic bacteria, Bacillus subtilis. These findings significantly contribute to the emerging research domain of selectively toxic (SelTox) nanoparticles and open the door for future exploration of synergetic interactions of SelTox nanoparticles with drugs.

Funder

Russian Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3