Author:
Bao Kaiqiang,Tian Haifeng,Su Min,Qiu Liping,Wei Xiaorong,Zhang Yanjiang,Liu Jian,Gao Hailong,Cheng Jimin
Abstract
Carbon dioxide (CO2) flux provides feedback between C cycling and the climatic system. There is considerable uncertainty regarding the direction and magnitude of the responses of this process to precipitation changes, hindering accurate prediction of C cycling in a changing world. We examined the responses of ecosystem CO2 flux to ambient precipitation and experimentally decreased (−35%) and increased precipitation (+20%) in a semiarid grassland in China between July 2013 and September 2015. The measured CO2 flux components included the gross ecosystem productivity (GEP), net ecosystem CO2 exchange (NEE), ecosystem respiration (Re), and soil respiration (Rs). The results showed that the seasonal and diurnal patterns of most components of ecosystem CO2 flux were minimally affected by precipitation treatments, with less than 4% changes averaged across the three growing seasons. GEP and NEE had a quadratic relationship, while Re and Rs increased exponentially with soil temperature. GEP, RE, and Rs, however, decreased with soil moisture. Decreased precipitation reduced the dependence of CO2 flux on soil temperature but partly increased the dependence on soil moisture; in contrast, increased precipitation had the opposite influence. Our results suggested a relatively stable CO2 flux in this semiarid grassland across the tested precipitation regimes.
Funder
National Natural Science Foundation of China
Program for New Century Excellent Talents in University
Program from Chinese Academy of Sciences
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献