Impacts of nitrogen fertilization on CO2 efflux with and without organic amendments in a high‐pH soil

Author:

Zhao Haolin1,Zhu Zhu1,Wang Xiujun1ORCID,Xu Minggang2ORCID,Huang Ni3

Affiliation:

1. Faculty of Geographical Science Beijing Normal University Beijing China

2. Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Institute of Eco‐environment and Industrial Technology Shanxi Agricultural University Taiyuan China

3. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute Chinese Academy of Sciences Beijing China

Abstract

AbstractOrganic amendments and nitrogen fertilization are common practices in agriculture, which have complex influences on the carbon cycle. To evaluate the effects of nitrogen‐organic carbon combination on CO2 efflux, we conducted a field incubation experiment with control, N fertilization without and with straw/biochar amendments for 20 months in a typical soil of North China Plain. CO2 efflux was measured every ~3–4 weeks, and water‐extractable organic carbon and soil microbial biomass carbon were analyzed in spring, summer, and autumn. Our results showed an asymmetric seasonality (slow increase in spring but rapid decrease in fall) in the control and biochar treatments, but a symmetric seasonality under straw treatments. Organic amendments with N fertilization caused an increase of CO2 efflux in most seasons (comparing without N fertilization), with a much greater increase in spring–summer of the first year (22%–35%) than the second year (1%–3%). Nitrogen fertilization caused a much greater increase in cumulative CO2 efflux with biochar (7%–13%) and with straw treatment (20%) than without organic amendments (3%) over the period of 20 months. SIC content showed an increase under organic amendments, with a greater increase under biochar amendments than straw amendments. The increases of CO2 efflux under nitrogen‐biochar and nitrogen‐straw combinations could be explained mainly by enhanced decomposition of SOC, biochar, and straw rather than SIC dissolution. Our study indicated that biochar amendments were more effective for carbon sequestration than straw amendments and nitrogen fertilization with organic amendments could cause changes in various processes of CO2 production in the cropland of north China.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3