FEEDBACK IN THE PLANT-SOIL SYSTEM

Author:

Ehrenfeld Joan G.1,Ravit Beth1,Elgersma Kenneth1

Affiliation:

1. Department of Ecology, Evolution, and Natural Resources, 2Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901;, ,

Abstract

▪ Abstract  Feedback between plants and the soil is frequently invoked on the basis of evidence of mutual effects. Feedback can operate through pathways involving soil physical properties, chemical and biogeochemical properties and processes, and biological properties, including the community composition of the microbiota and soil fauna. For each pathway, we review the mechanistic basis and assess the evidence that feedback occurs. We suggest that several properties of feedback systems (for example, their complexity, specificity, and strength relative to other ecological factors, as well as the temporal and spatial scales over which they operate) be considered. We find that the evidence of feedback is strongest for plants growing in extreme environments and for plant-mutualist or plant-enemy interactions. We conclude with recommendations for a more critical appraisal of feedback and for new directions of research. Let us not make arbitrary conjectures about the greatest matters. Heraclitus ( 1 )

Publisher

Annual Reviews

Subject

General Environmental Science

Cited by 699 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3