SEG-SLAM: Dynamic Indoor RGB-D Visual SLAM Integrating Geometric and YOLOv5-Based Semantic Information

Author:

Cong Peichao1,Li Jiaxing1,Liu Junjie1,Xiao Yixuan1ORCID,Zhang Xin1

Affiliation:

1. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China

Abstract

Simultaneous localisation and mapping (SLAM) is crucial in mobile robotics. Most visual SLAM systems assume that the environment is static. However, in real life, there are many dynamic objects, which affect the accuracy and robustness of these systems. To improve the performance of visual SLAM systems, this study proposes a dynamic visual SLAM (SEG-SLAM) system based on the orientated FAST and rotated BRIEF (ORB)-SLAM3 framework and you only look once (YOLO)v5 deep-learning method. First, based on the ORB-SLAM3 framework, the YOLOv5 deep-learning method is used to construct a fusion module for target detection and semantic segmentation. This module can effectively identify and extract prior information for obviously and potentially dynamic objects. Second, differentiated dynamic feature point rejection strategies are developed for different dynamic objects using the prior information, depth information, and epipolar geometry method. Thus, the localisation and mapping accuracy of the SEG-SLAM system is improved. Finally, the rejection results are fused with the depth information, and a static dense 3D mapping without dynamic objects is constructed using the Point Cloud Library. The SEG-SLAM system is evaluated using public TUM datasets and real-world scenarios. The proposed method is more accurate and robust than current dynamic visual SLAM algorithms.

Funder

Central Government Guides Local Science and Technology Development Foundation Projects

Guangxi Key Research and Development Project

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3