An Overview on Visual SLAM: From Tradition to Semantic

Author:

Chen WeifengORCID,Shang GuangtaoORCID,Ji AihongORCID,Zhou ChengjunORCID,Wang XiyangORCID,Xu ChonghuiORCID,Li ZhenxiongORCID,Hu KaiORCID

Abstract

Visual SLAM (VSLAM) has been developing rapidly due to its advantages of low-cost sensors, the easy fusion of other sensors, and richer environmental information. Traditional visionbased SLAM research has made many achievements, but it may fail to achieve wished results in challenging environments. Deep learning has promoted the development of computer vision, and the combination of deep learning and SLAM has attracted more and more attention. Semantic information, as high-level environmental information, can enable robots to better understand the surrounding environment. This paper introduces the development of VSLAM technology from two aspects: traditional VSLAM and semantic VSLAM combined with deep learning. For traditional VSLAM, we summarize the advantages and disadvantages of indirect and direct methods in detail and give some classical VSLAM open-source algorithms. In addition, we focus on the development of semantic VSLAM based on deep learning. Starting with typical neural networks CNN and RNN, we summarize the improvement of neural networks for the VSLAM system in detail. Later, we focus on the help of target detection and semantic segmentation for VSLAM semantic information introduction. We believe that the development of the future intelligent era cannot be without the help of semantic technology. Introducing deep learning into the VSLAM system to provide semantic information can help robots better perceive the surrounding environment and provide people with higher-level help.

Funder

National Key R&D programme of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference295 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3