Author:
Gupta Abhishek,Fernando Xavier
Abstract
<p>This article presents a survey of simultaneous localization and mapping (SLAM) and data fusion techniques for object detection and environmental scene perception in unmanned aerial vehicles (UAVs). We critically evaluate some current SLAM implementations in robotics and autonomous vehicles and their applicability and scalability to UAVs. SLAM is envisioned as a potential technique for object detection and scene perception to enable UAV navigation through continuous state estimation. In this article, we bridge the gap between SLAM and data fusion in UAVs while also comprehensively surveying related object detection techniques such as visual odometry and aerial photogrammetry. We begin with an introduction to applications where UAV localization is necessary, followed by an analysis of multimodal sensor data fusion to fuse the information gathered from different sensors mounted on UAVs. We then discuss SLAM techniques such as Kalman filters and extended Kalman filters to address scene perception, mapping, and localization in UAVs. The findings are summarized to correlate prevalent and futuristic SLAM and data fusion for UAV navigation, and some avenues for further research are discussed.</p>
Publisher
Ryerson University Library and Archives
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献