Study of Oxidation and Polarization-Dependent Optical Properties of Environmentally Stable Layered GaTe Using a Novel Passivation Approach

Author:

Kotha ,Murray ,Tuschel ,Gallis

Abstract

Emerging two-dimensional gallium chalcogenides, such as gallium telluride (GaTe), are considered promising layered semiconductors that can serve as vital building blocks towards the implementation of nanodevices in the fields of nanoelectronics, optoelectronics, and quantum photonics. However, oxidation-induced electronic, structural, and optical changes observed in ambient-exposed gallium chalcogenides need to be further investigated and addressed. Herein, we report on the thickness-dependent effect of air exposure on the Raman and photoluminescence (PL) properties of GaTe flakes, with thicknesses spanning in the range of a few layers to 100 nm. We have developed a novel chemical passivation that results in complete encapsulation of the as-exfoliated GaTe flakes in ultrathin hydrogen–silsesquioxane (HSQ) film. A combination of correlation and comparison of Raman and PL studies reveal that the HSQ-capped GaTe flakes are effectively protected from oxidation in air ambient over the studied-period of one year, and thus, preserving their structural and optical characteristics. This contrasts with the behavior of uncapped GaTe, where we observe a significant reduction of the GaTe-related PL (~100×) and Raman (~4×) peak intensities for the few-layered flakes over a period of few days. The time-evolution of the Raman spectra in uncapped GaTe is accompanied by the appearance of two new prominent broad peaks at ~130 cm−1 and ~146 cm−1, which are attributed to the formation of polycrystalline tellurium, due to oxidation of ambient-exposed GaTe. Furthermore, and by leveraging this novel passivation, we were able to explore the optical anisotropy of HSQ-capped GaTe flakes. This is caused by the one-dimensional-like nature of the GaTe layer, as the layer comprises Ga–Ga chains extending along the b-axis direction. In concurrence with high-resolution transmission electron microscopy analysis, polarization-dependent PL spectroscopy was used to identify the b-axis crystal direction in HSQ-capped GaTe flakes with various thicknesses over a range of wavelengths (458 nm–633 nm). Thus, our novel surface-passivation offers a new approach to explore and reveal the physical properties of the layered GaTe, with the potential of fabricating reliable polarization-dependent nanophotonics with structural and optical stability.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3