Author:
Barcelata-Pinzón Antonio,Álvarez-Tamayo Ricardo Iván,Prieto-Cortés Patricia
Abstract
We report a novel fully real-time automatized optomechatronic dual-aperture common-path interferometer system for obtaining the phase difference between two interferograms by using the technique of phase-shifting interferometry. A motorized system is used to shift an additional phase transversally to the optical axis by ruling translation. For each high-resolution ruling displacement step of 0.793 μm, an interferogram is recorded by a CCD camera. The phase difference between the two successive recorded interferograms is then automatically calculated by computational self-calibrated algorithms. The proposed device provides more accurate measuring than typically used manual processes. Real-time phase differences are obtained from a robust low-cost optomechatronic system. Analytical calculation of the phase is performed automatically without the requirement of additional or external tools and processes, reducing the significant rework delay. A set of 47 interferograms were captured in real time then recorded and analyzed, obtaining an average phase shifting of 2.483 rad. Analytic explanation and experimental results are presented.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献