Tree Growth Response to Low-Intensity Prescribed Burning in Pinus nigra Stands: Effects of Burn Season and Fire Severity

Author:

Espinosa Juncal,Martin-Benito Dario,Rodríguez de Rivera ÓscarORCID,Hernando Carmen,Guijarro MercedesORCID,Madrigal JavierORCID

Abstract

The study of the short-term post-burn tree growth in a mixed stand of Pinus nigra and Pinus pinaster and in a pure stand of P. nigra in the Cuenca Mountains (Spain) will enable us to determine the disturbance of prescribed burning conducted in two seasons. Dendrochronological methods and mixed modelling were used to investigate whether tree growth responses are influenced by stand and tree characteristics, fire season and fire severity variables. The findings revealed that prescribed burning scarcely affected tree growth. The type of stand (mixed or pure) was not critical for tree growth. The individual tree characteristics were significant factors in all the scenarios studied. The inclusion of some fire severity variables for the first time in tree growth models showed that the maximum scorch height determined a main part of the variability of tree growth. The time during which the temperature was above 60 °C in the cambium region and temperature was above 300 °C in the bark surface were only significant factors after spring burnings. The litterfall one year after the prescribed burning was not a significant factor in any of the models. Overall, the findings confirm the characteristic resistance of P. nigra to surface fires and favor the potential application of prescribed burning programs for this species in the Mediterranean Basin.

Funder

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3