Wildfires Improve Forest Growth Resilience to Drought

Author:

Camarero Jesús Julio1ORCID,Guijarro Mercedes2ORCID,Calama Rafael2,Valeriano Cristina1ORCID,Pizarro Manuel1ORCID,Madrigal Javier23

Affiliation:

1. Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain

2. Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Ctra. de La Coruña km 7,5, 28040 Madrid, Spain

3. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), Ramiro de Maeztu s/n, 28040 Madrid, Spain

Abstract

In seasonally dry forests, wildfires can reduce competition for soil water among trees and improve forest resilience to drought. We tested this idea by comparing tree-ring growth patterns of Pinus pinea stands subjected to two prescribed burning intensities (H, high; L, low) and compared them with unburned (U) control stands in southwestern Spain. Then, we assessed post-growth resilience to two droughts that occurred before (2005) and after (2012) the prescribed burning (2007). Resilience was quantified as changes in radial growth using resilience indices and as changes in cover and greenness using the NDVI. The NDVI sharply dropped after the fire, and minor drops were also observed after the 2005 and 2012 droughts. We found that post-drought growth and resilience were improved in the H stands, where growth also showed the lowest coherence among individual trees and the lowest correlation with water year precipitation. In contrast, trees from the L site showed the highest correlations with precipitation and the drought index. These findings suggest that tree growth recovered better after drought and responded less to water shortage in the H trees. Therefore, high-intensity fires are linked to reduced drought stress in Mediterranean pine forests.

Funder

Spanish Ministry of Science and Innovation projects

Interreg-POCTEP CILIFO

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3