Installation of Clip-Type Bird Flight Diverters on High-Voltage Power Lines with Aerial Manipulation Robot: Prototype and Testbed Experimentation

Author:

Rodriguez-Castaño AngelORCID,Nekoo Saeed RafeeORCID,Romero Honorio,Salmoral Rafael,Acosta José ÁngelORCID,Ollero Anibal

Abstract

This work presents the application of an aerial manipulation robot for the semi-autonomous installation of clip-type bird flight diverters on overhead power line cables. A custom-made prototype is designed, developed, and experimentally validated. The proposed solution aims to reduce the cost and risk of current procedures carried out by human operators deployed on suspended carts, lifts, or manned helicopters. The system consists of an unmanned aerial vehicle (UAV) equipped with a custom-made tool. This tool allows the high force required for the diverter installation to be generated; however, it is isolated from the aerial robot through a passive joint. Thus, the aerial robot stability is not compromised during the installation. This paper thoroughly describes the designed prototype and the control system for semi-autonomous operation. Flight experiments conducted in an illustrative scenario validate the performance of the system; the tests were carried out in an indoor testbed using a power line cable mock-up.

Funder

H2020 European Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Guidance on Energy Transmission Infrastructure and EU Nature Legislation,2018

2. High-voltage overhead transmission lines and farmland value: Evidences from the real estate market in Apulia, southern Italy

3. Red Eléctrica de Españahttps://www.ree.es/es/conocenos/principales-indicadores/red-de-transporte-circuito

4. Permanent-URL(a)https://aerial-core.eu/

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3