Author:
Yang Baohua,Gao Yuan,Yan Qian,Qi Lin,Zhu Yue,Wang Bing
Abstract
Soluble solids content (SSC) is one of the important components for evaluating fruit quality. The rapid development of hyperspectral imagery provides an efficient method for non-destructive detection of SSC. Previous studies have shown that the internal quality evaluation of fruits based on spectral information features achieves better results. However, the lack of comprehensive features limits the accurate estimation of fruit quality. Therefore, the deep learning theory is applied to the estimation of the soluble solid content of peaches, a method for estimating the SSC of fresh peaches based on the deep features of the hyperspectral image fusion information is proposed, and the estimation models of different neural network structures are designed based on the stack autoencoder–random forest (SAE-RF). The results show that the accuracy of the model based on the deep features of the fusion information of hyperspectral imagery is higher than that of the model based on spectral features or image features alone. In addition, the SAE-RF model based on the 1237-650-310-130 network structure has the best prediction effect (R2 = 0.9184, RMSE = 0.6693). Our research shows that the proposed method can improve the estimation accuracy of the soluble solid content of fresh peaches, which provides a theoretical basis for the non-destructive detection of other components of fresh peaches.
Funder
Natural Science Foundation of Anhui Province
Natural Science Research Project of Anhui Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献