Prediction of Total Soluble Solids Content Using Tomato Characteristics: Comparison Artificial Neural Network vs. Multiple Linear Regression

Author:

Kabaş Aylin1,Ercan Uğur2ORCID,Kabas Onder3ORCID,Moiceanu Georgiana4ORCID

Affiliation:

1. Department of Organic Farming, Manavgat Vocational School, Akdeniz University, 07070 Antalya, Türkiye

2. Department of Informatics, Akdeniz University, 07070 Antalya, Türkiye

3. Department of Machine, Technical Science Vocational School, Akdeniz University, 07070 Antalya, Türkiye

4. Department of Entrepreneurship and Management, Faculty of Entrepreneurship, Business Engineering and Management, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania

Abstract

Tomatoes are among the world’s most significant vegetables, both in terms of production and consumption. Harvesting takes place in tomato production when the important quality attribute of total soluble solids content reaches its maximum possible level. Tomato total soluble solids content (TSS) is among the most crucial attribute parameters for assessing tomato quality and for tomato commercialization. Determination of total soluble solids content by conventional measurement methods is both destructive and time-consuming. Therefore, the tomato processing industry needs a rapid identification method to measure total soluble solids content (TSS). In this study, we aimed to estimate how much soluble solids there are in beef tomato fruit by Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) methods. The models were assessed using the Coefficient of Determination (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) metrics. The training data set results of the MLR model established to estimate the amount of brix in tomato fruit, calculated as MAE: 0.2349, RMSE: 0.3048, R2: 0.8441, and MAPE: 5.5368, while, according to the ANN model, MAE: 0.0250, RMSE: 0.031, R2: 0.9982 and MAPE: 0.5814. According to the metric outcomes, the ANN-based model performed better in both the training and testing parts.

Funder

National University of Science and Technology Politehnica Bucharest

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3