GPU-Based Soil Parameter Parallel Inversion for PolSAR Data

Author:

Yin QiangORCID,Wu You,Zhang FanORCID,Zhou YongshengORCID

Abstract

With the development of polarimetric synthetic aperture radar (PolSAR), quantitative parameter inversion has been seen great progress, especially in the field of soil parameter inversion, which has achieved good results for applications. However, PolSAR data is also often many terabytes large. This huge amount of data also directly affects the efficiency of the inversion. Therefore, the efficiency of soil moisture and roughness inversion has become a problem in the application of this PolSAR technique. A parallel realization based on a graphics processing unit (GPU) for multiple inversion models of PolSAR data is proposed in this paper. This method utilizes the high-performance parallel computing capability of a GPU to optimize the realization of the surface inversion models for polarimetric SAR data. Three classical forward scattering models and their corresponding inversion algorithms are analyzed. They are different in terms of polarimetric data requirements, application situation, as well as inversion performance. Specifically, the inversion process of PolSAR data is mainly improved by the use of the high concurrent threads of GPU. According to the inversion process, various optimization strategies are applied, such as the parallel task allocation, and optimizations of instruction level, data storage, data transmission between CPU and GPU. The advantages of a GPU in processing computationally-intensive data are shown in the data experiments, where the efficiency of soil roughness and moisture inversion is increased by one or two orders of magnitude.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3