Abstract
Very Long Baseline Interferometry (VLBI) solution can yield accurate information of angular position, and has been successfully used in the field of deep space exploration, such as astrophysics, imaging, detector positioning, and so on. The increase in VLBI data volume puts higher demands on efficient processing. Essentially, the main step of VLBI is the correlation processing, through which the angular position can be calculated. Since the VLBI correlation processing is both computation-intensive and data-intensive, the CPU cluster is usually employed in practical application to perform complex distributed computation. In this paper, we propose a parallel implementation of VLBI correlator based on graphics processing unit (GPU) to realize a more efficient and economical angular position calculation of deep space target. On the basis of massively GPU parallel computing, the coalesced access strategy and the parallel pipeline strategy are introduced to further accelerate the VLBI correlator. Experimental results show that the optimized GPU-based VLBI method can meet the real-time processing requirements of the received data stream. Compared with the sequential method, the proposed approach can reach a 224.1 × calculation speedup, and a 36.8 × application speedup. Compared with the multi-CPUs method, it can achieve 28.6 × calculation speedup and 4.7 × application speedup.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Reference33 articles.
1. An introduction to radio astronomy
2. 2001 Mars Odyssey Orbit Determination During Interplanetary Cruise
3. Very-long-baseline-interferometry measurements of planetary orbiters at Mars and Venus;Kroger;NASA STI/Recon Tech. Rep. A,1993
4. 5 Year Technology Roadmap for VLBI Global Observing System (VGOS);Hilliard,2019
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献