A Hybrid GPU and CPU Parallel Computing Method to Accelerate Millimeter-Wave Imaging

Author:

Ding Li12ORCID,Dong Zhaomiao1,He Huagang1,Zheng Qibin12ORCID

Affiliation:

1. Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai 200093, China

2. School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai 200093, China

Abstract

The range migration algorithm (RMA) based on Fourier transformation is widely applied in millimeter-wave (MMW) close-range imaging because of its few operations and small approximation. However, its interpolation stage is not effective due to the involved intensive logic controls, which limits the speed performance in a graphics processing unit (GPU) platform. Therefore, in this paper, we present an acceleration optimization method based on the hybrid GPU and central processing unit (CPU) parallel computation for implementing the RMA. The proposed method exploits the strong logic-control capability of the CPU to assist the GPU in processing the logic controls of the interpolation stage. The common positions of wavenumber-domain components to be interpolated are calculated by the CPU and stored in the constant memory for broadcast at any time. This avoids the repetitive computation consumed in a GPU-only scheme. Then the GPU is responsible for the remaining matrix-related steps and outputs the needed wavenumber-domain values. The imaging experiments verify the acceleration efficiency of the proposed method and demonstrate that the speedup ratio of our proposed method is more than 15 times of that by the CPU-only method, and more than 2 times of that by the GPU-only method.

Funder

Shanghai Science and Technology Development Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large video processing using GPU programming;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

2. Parallel Fingerprint Recognition Using Generalized Hough Transform in a Virtual Grid;Proceedings of the Future Technologies Conference (FTC) 2023, Volume 3;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3