Impact of pH on Regulating Ion Encapsulation of Graphene Oxide Nanoscroll for Pressure Sensing

Author:

Zhao Weihao,Wang Lin,Pei Chengjie,Wei Cong,You Hui,Zhang Jindong,Li HaiORCID

Abstract

Recently, graphene oxide nanoscroll (GONS) has attracted much attention due to its excellent properties. Encapsulation of nanomaterials in GONS can greatly enhance its performance while ion encapsulation is still unexplored. Herein, various ions including hydronium ion (H3O+), Fe3+, Au3+, and Zn2+ were encapsulated in GONSs by molecular combing acidic graphene oxide (GO) solution. No GONS was obtained when the pH of the GO solution was greater than 9. A few GONSs without encapsulated ion were obtained at the pH of 5–8. When the pH decreased from 5 to 0.15, high-density GONSs with encapsulated ions were formed and the average height of GONS was increased from ~50 to ~190 nm. These results could be attributed to the varied repulsion between carboxylic acid groups located at the edges of GO nanosheets. Encapsulated metal ions were converted to nanoparticles in GONS after high-temperature annealing. The resistance-type device based on reduced GONS (rGONS) mesh with encapsulated H3O+ showed good response for applied pressure from 600 to 8700 Pa, which manifested much better performance compared with that of a device based on rGONS mesh without H3O+.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3